Stiffness Data of High-Modulus Asphalt Concretes for Road Pavements: Predictive Modeling by Machine-Learning
نویسندگان
چکیده
This paper presents a study about Machine Learning approach for modeling the stiffness of different high-modulus asphalt concretes (HMAC) prepared in laboratory with harder paving grades or polymer-modified bitumen which were designed without reclaimed (RA) content. Notably, mixtures considered this are not part purposeful experimentation support modeling, but practical solutions developed actual mix design processes. Since models require careful definition network hyperparameters, Bayesian optimization process was used to identify neural topology, as well transfer function, optimal type needed. By employing performance metrics, it possible compare obtained by diversifying inputs. Using variables related composition, namely content, air voids, maximum and average bulk density, along categorical variable that distinguishes RAP percentages, successful predictions Stiffness have been obtained, determination coefficient (R2) value equal 0.9909. Nevertheless, use additional input, Marshall stability quotient, allows prediction be further improved, R2 values 0.9938 0.9922, respectively. However, cost time involved test may justify such slight improvement.
منابع مشابه
Performance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures
Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dyn...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Rut Resistant Asphalt Pavements
The three major distress conditions affecting the performance of asphalt pavements are permanent deformation or rutting, fatigue or load associated cracking, and low temperature or thermal cracking. In an earlier technical topics article (Fall, 1998), we examined the causes of fatigue cracking and the importance of good compaction during construction to help minimize this type of distress. In t...
متن کاملRoad Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway
This paper describes a fast procedure for evaluating asphalt pavement surface defects using airborne emissivity data. To develop this procedure, we used airborne multispectral emissivity data covering an urban test area close to Venice (Italy).For this study, we first identify and select the roads' asphalt pavements on Multispectral Infrared Visible Imaging Spectrometer (MIVIS) imagery using a ...
متن کاملDynamic Hydraulic Conductivity (Permeability) of Asphalt Pavements
External pressures applied to a saturated pavement pore structure are often dynamic due to the repeated tire loading. Therefore, a dynamic permeability constant is more realistic representation of the response of a pavement pore structure than the Darcy’s permeability. To investigate the unsteady (dynamic) fluid flow in asphalt pavements, a 3D fluid flow model was developed using the lattice Bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Coatings
سال: 2022
ISSN: ['2079-6412']
DOI: https://doi.org/10.3390/coatings12010054